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Introduction

Genetic engineering with recombinant DNA is a powerful and widespread technology that
enables biologists to redesign life forms by modifying or extending their DNA. Advances in this
domain allow us to gain insight into the operating principles that govern living organisms, and
can also be applied to a variety of fields including human therapeutics, synthesis of
pharmaceutical products, molecular fabrication of biomaterials, crops and livestock engineering,
and toxin detection with biological sentinels. While already providing great benefits, existing
genetic engineering applications only hint at the possibilities for harnessing cells to our benefit.

Well, Synthetic biology is the future of today’s Genetic engineering or Biotechnology.
Synthetic biology has been recently defined as the artificial design and engineering of biological
systems and living organisms for purposes of improving applications for industry or biological
research as it has expanded to many interdisciplinary fields such as biotechnology, evolutionary
biology, molecular biology, systems biology, biophysics, computer engineering, and genetic
engineering. The similarity of silicon diode based electronic engineering and gene circuit based
synthetic biology has been shown (Fig. 1).
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Fig. 1. Relation ship in between Electric circuit and Gene circuit

How Synthetic biology is different?
Genetic engineering (last 30 years):
Recombinant DNA

Polymerase Chain Reaction (PCR)
Automated sequencing

Synthetic biology adds:

Automated construction - separate design from construction.
Standards - create repositories of parts that can be easily composed.
Abstraction - high-level models to facilitate design.

A brief history of synthetic biology

The first ever studied gene circuit was “lac Operon” which is a naturally occurring
phenomenon and after that man started to develop new gene circuit based protein-nucleic acid
interactions. Chronological development has been shown in Fig. 2.
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Fig.2. Brief History of Synthetic Biology

Landmark in the fiend of synthetic biology:

» Toggle switch: A pair of repressor genes (lacl and cl) are arranged to antagonistically
repress transcription of each other, resulting in a bistable genetic circuit in which only
one of the two genes is active at a given time. The toggle can be ‘flipped’ to the desired
transcriptional state using environmental inputs to disengage one of the repressors from
its operator (for example, IPTG (isopropyl-B-d-thiogalactoside) is used to disengage Lacl
and heat is used to disengage cl). Once the input is removed, the desired transcriptional
state persists for multiple generations. (Fig. 3)
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Fig 3. Toggle Switch

Auto regulatory circuit: In this circuit, TetR-mediated negative-feedback regulation of its
own transcription results in a narrow population-wide expression distribution, as measured by
the co-transcribed GFP reporter. The circuit demonstrates a principle that was long-appreciated
in control-systems engineering and nonlinear dynamics — that noise in a system can be reduced
by introducing negative feedback. (Fig. 4)

——Without feedback
With feedback

Cell count

GFP fluorescence

Fig. 4. Design and Behaviour of Autoregulatory circuit

The repressilator: The circuit is constructed from three repressor—promoter interactions
(between cl, Lacl and TetR repressors and their associated promoters), which are linked together
to form a ring-shaped network, in which TetR regulates a GFP-reporter node. When analysed at
the single-cell level using time-lapse fluorescence microscopy, the circuit exhibits periodic
oscillations in GFP expression, which persist for a number of generations; however, oscillations
become dampened after a few periods and are generally noisy, with individual cells showing
high variability in both the amplitude and period of their oscillations. (Fig. 5)
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Fig. 5. Vector construct, Design and Behaviour of Repressilator

Genetic circuit design based on different requlator classes

Building a genetic circuit in vivo requires tedious optimization of many often poorly
understood parameters of protein—-DNA interactions and mRNA and protein stabilities, among
others. Transcriptional circuits function by changing the flow of RNA polymerase (RNAP) on
DNA. There are a number of regulators that influence this flux that have been used as the basis
for building synthetic circuits.

_ Many families of proteins can bind to specific DNA sequences

(operators). The simplest way to use these proteins as regulators is to design promoters with
operators that block the binding or progression of RNAP. Such repressors have been built out of
zinc-finger proteins, transcription activator—like effectors, TetR homologs, phage repressors and
Lacl homologs. A core set of three repressors were used to build many of the first synthetic
circuits (CI, TetR, Lacl) DNA-binding proteins can also function as activators that increase the
flux of RNAP on DNA.
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Many logic gates have been constructed with DNA-binding proteins. For example, NOT
and NOR gates have been built by connecting input promoter(s) to a repressor that turns off an
output promoter. (Fig. 6)
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Fig. 6. NOT Gate

AND gates have been built with artificially split proteins and activators that require
chaperones. Similarly, NAND gates can be built with proteins that block the activity of an
activator, such as anti-c factors, which inhibit ¢ factors.
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Fig. 7. AND Gate

Recombinase: Recombinases are proteins that can facilitate the inversion of DNA segments
between binding sites. Site specific recombinases often mediate ‘cut-and-paste’ recombination,
during which DNA is looped, cleaved and religated. Two types of recombinases have been used
to build genetic circuits. The first is tyrosine recombinases, such as Cre, Flp and FimBE, which
require host-specific factor.

These recombinases can be reversible and flip the DNA in both directions, or
irreversible and flip in only a single direction. The second class of recombinases is serine
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integrases, which catalyze unidirectional reactions that rely on double-strand breaks to invert
DNA. Serine integrases typically do not require host factors and often have cognate excisionases
that can be expressed independently to return the DNA to its original orientation. Recombinases
have been used to build switches, memory circuits, counters and logic gates. These proteins are
ideal for memory storage because they flip DNA permanently, and once the DNA is flipped, its
new orientation is maintained without the continuous input of materials or energy. In
recombinase logic gates, these discrete physical states of the DNA can correspond to ON and
OFF states (1 and 0).

All two-input gates, including AND and NOR logic, have been constructed such that
two input promoters express a pair of orthogonal recombinases, which change RNAP flux by
inverting unidirectional terminators, promoters or entire genes. (Fig. 8)
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Fig. 8. NOR and AND Gate based on the Recombinase protein

CRISPRI: Clustered, regularly interspaced, short palindromic repeat (CRISPR) arrays
function as a bacterial ‘immune system’ that targets specific DNA sequence motifs for
degradation.. CRISPR systems use a Cas (CRISPR-associated) nuclease and guide RNA to
introduce double-strand breaks to specific DNA sequences. Mutant Cas proteins such as Cas9
that do not have nuclease activity have been developed and used as transcription factors that
knock down gene expression by forming a DNA bubble that interferes with RNAP activity.
CRISPR can also activate transcription by fusing an RNAP recruiting domain to catalytically
inactive Caso.

One advantage of CRISPR interference (CRISPRI) is the designability of the RNA-DNA
complex. It is possible to imagine creating a very large set of orthogonal guide sequences that
target different promoters. This set would enable the construction of large genetic circuits, but it
would need to be experimentally screened because predicting guide RNA orthogonality is
complicated. (Fig. 9)
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Fig. 9. CRISPRi based NOR Gate

A current challenge in implementing CRISPRI circuits is toxicity, which is difficult to
control.

Interactions between synthetic circuits and the host organism

Genetic circuits are based on biochemical interactions within living cells. Most circuits
use host resources to function, including transcription and translation machinery (e.g., ribosomes
and RNAP), DNA-replication equipment and metabolites (e.g., amino acids). The availability of
these resources and the details of the intracellular environment change significantly in different
strain backgrounds, environmental conditions and media, and they also depend on cell density
and growth rate.

Cell-cell communication was discovered in bacteria about three decades ago (Hastings
and Nealson, 1977). The ability to engineer both prokaryotic and eukaryotic communication
systems with new cell- cell interaction capabilities will be central to the future engineering of
multicellular structures. The system allows us to control the extent of a chemical message that a
sender cell transmits to a receiver cell, which subsequently activates a remote transcriptional
response. (Fig. 10)
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Fig. 10. Cell to cell communication

Quorum sensing is a bacterial communication system that allows cells to sense their own
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population density through the diffusion of a chemical signal encoded by their genes (Bassler,
1999). The quorum sensing system of certain marine prokaryotes (e.g. Vibrio fischeri) is
responsible for light organ symbiosis with other animals.

Application of Synthetic Biology:

v Gene therapy
v Drug Development
v’ Biotechnology Applications

Genetic circuits in ‘smart’ plants that sense environmental stimuli and implement a
response. The circuit, built into chloroplasts, integrates sensors for drought (pSpark), temperature
(pCBF) and plant maturity (pSAG12) to control pesticide (Bt) production and drought tolerance
(IPT). (Fig. 11)
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Fig. 11. Smart Plant Concept

International Genetically Engineered Machine (iGEM) is an independent, non-profit
organization dedicated to education and competition, the advancement of synthetic biology, and
the development of an open community and collaboration. http://parts.igem.org/Main_Page
provides a library of gene circuit parts, devices and proteins which can be ordered for developing
new gene-circuits also.
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